Cut{
 ⍝ Model of cut.  Works in either index-origin.
 ⍝ Iverson, K.E., Rationalized APL, 1983, Section K. http://www.jsoftware.com/papers/RationalizedAPL.htm
 ⍝ Hui, R.K.W., Some Uses of { and }, 1987, Section 3.2. http://www.jsoftware.com/papers/from.htm
 ⍝ Iverson, K.E., A Dictionary of APL, 1987, m⍤v. http://www.jsoftware.com/papers/APLDictionary.htm
 ⍝ Hui, R.K.W., and K.E. Iverson, J Introduction and Dictionary, 2011, Cut (;.). http://www.jsoftware.com/help/dictionary/d331.htm

  ⍺←(|⍵⍵){                          ⍝ default left argument
    0=⍺:⍉⎕IO,⍪-⍴⍵
    1=⍺:⎕IO=(1↑⍵)⍳⍵
    2=⍺:⎕IO=(¯1↑⍵)⍳⍵
    3=⍺:(⍴⍴⍵)⍴⌊/⍴⍵
  }⍵

  ⍺ ⍺⍺{⍺⍺ ⍵}{
    ⎕ML←1                           ⍝ needed by ⊂

    Under{⍵⍵⍣¯1⊢(⍵⍵ ⍺)⍺⍺(⍵⍵ ⍵)}    ⍝ dyadic case of "under" operator
    p2{(¯1⌽k↓⍺)⊂[⎕IO+⍺⍺]((⍺⍺⍴0),k←⎕IO-(⌽⍺)⍳1)↓⍵}
    Blk1{0=≢⍺:⍵ ⋄ 0=≢⊃⍺:(1↓⍺)((1+⍺⍺)∇∇)⍵ ⋄ (1↓⍺)((1+⍺⍺)∇∇)(⊂⊃⍺)⊂[⎕IO+⍺⍺]¨⍵}
    Blk2{0=≢⍺:⍵ ⋄ 0=≢⊃⍺:(1↓⍺)((1+⍺⍺)∇∇)⍵ ⋄ (1↓⍺)((1+⍺⍺)∇∇)(⊂⊃⍺)(⍺⍺ p2)¨⍵}
    ifv←{(⍉⍺,⍪)(2>≢⍴⍵)⊢⍵}          ⍝ laminate ⍺ if ⍵ is vector or scalar
    ci←{⎕IO+(0>s){⌽⍣⍺⊢⍵}¨(⎕IO-⍨⍳¨|s)+(((i)↑⍴⍵)|i-⎕IO×0≤i)-(0>i)ׯ1+|si s←↓⎕IO ifv ⍺}
    ti←{↑{↑(⍵+⎕IO)((×s)×(|s)r-⍵)m∘ר⎕IO-⍨⍳⌈r÷m+(0=m)×r(m)⍴⍴⍵⊣m s←↓1 ifv ⍺}
    tj←{↑{↑(⍵+⎕IO)sm∘ר⎕IO-⍨⍳⌈(1+r-|s)÷m+(0=m)×r(m)⍴⍴⍵⊣m s←↓1 ifv ⍺}

    (1=|⍵⍵)(⍬≡⍺)∨1≠≡⍺:↑⍺⍺¨((0>⍵⍵)××≢¨⍺)↓¨⍺(0 Blk1)⊂⍵
    (2=|⍵⍵)(⍬≡⍺)∨1≠≡⍺:↑⍺⍺¨((0>⍵⍵)×-×≢¨⍺)↓¨⍺(0 Blk2)⊂⍵

     0=⍵⍵:⍺(⍺⍺ ci⌷⊢)⍵
     1=⍵⍵:↑⍺(⍺⍺¨⊂[⎕IO])⍵
    ¯1=⍵⍵:↑⍺(⍺⍺∘(1∘↓)¨⊂[⎕IO])⍵
     2=⍵⍵:⍺ ⍺⍺∘⊖∇∇ 1 Under⊖⍵
    ¯2=⍵⍵:⍺ ⍺⍺∘(¯1∘↓)∇∇ 2⊢⍵
     3=⍵⍵:(ti)⍺⍺ ∇∇ 0⍤2 15⊢⍵
    ¯3=⍵⍵:(tj)⍺⍺ ∇∇ 0⍤2 15⊢⍵

    *'domain error'
  }⍵⍵⊢⍵
}

code_colours

test script

Back to: notes

Back to: Workspaces