⍝ Relationship between point and k-cell:
⎕io ⎕ml←0 3 ⍝ Environment for tests.
3 ×kcell 1 2 3 4 5 ⍝ Single Point Boundary (scalar).
¯1 ¯1 0 1 1
×kcell .5 ⍝ Is point in the unit interval?
¯1
2 4 ×kcell 1 2 3 4 5 ⍝ Upper and Lower Bounds (2-vector).
1 0 ¯1 0 1
⍝ Differentiate between regions
+kcell 1 5⍴.5 0 1 ¯1.5 2 ⍝ Multiple points in unit interval
0 ¯1 1 ¯2 2
2 4 +kcell 1 2 3 4 5 ⍝ (signum sum).
¯2 ¯1 0 1 2
⍝ Upper left and lower right hand
b←⊃(3 2)(5 6) ⍝ corners of a rectangle.
⍝ Various points in the plane
p←⍉⊃(6 8)(5 2)(4 4)(7 6)(3 5)(2 3) ⍝ (2-space).
⍝ Positions: outside, boundary, int-
b ×kcell p ⍝ erior, outside, boundary, outside.
1 0 ¯1 1 0 1
⍝ Positions: Below right, corner,
b +kcell p ⍝ interior, below, edge, above.
12 4 0 11 ¯5 ¯10
+kcell 1 0 ⍝ Unit square
4
b3←2 3⍴0 0 0 10 10 10 ⍝ Coordinates of a cube.
b3 ×kcell ⍉⊃(5 5 5)(11 15 20)(3 8 10) ⍝ Inside, outside, boundary of cube.
¯1 1 0
×kcell .1×⍉⊃(5 5 5)(11 15 20)(3 8 10) ⍝ Unit cube.
¯1 1 0
b3 +kcell 0 10 10 ⍝ Top left rear corner of the cube.
¯19
b3 +kcell 5 0 0 ⍝ Bottom Front Edge of the cube.
¯6
b3 +kcell 5 5 10 ⍝ Top Face of the cube.
1
b3 +kcell ⍉⊃(0 5 5)(2 3 4) ⍝ Left Face, Interior of cube.
¯25 0
⍝∇ kcell
Back to: code
Back to: Workspaces