⍝ Relationship between point and k-cell: ⎕io ⎕ml←0 3 ⍝ Environment for tests. 3 ×kcell 1 2 3 4 5 ⍝ Single Point Boundary (scalar). ¯1 ¯1 0 1 1 ×kcell .5 ⍝ Is point in the unit interval? ¯1 2 4 ×kcell 1 2 3 4 5 ⍝ Upper and Lower Bounds (2-vector). 1 0 ¯1 0 1 ⍝ Differentiate between regions +kcell 1 5⍴.5 0 1 ¯1.5 2 ⍝ Multiple points in unit interval 0 ¯1 1 ¯2 2 2 4 +kcell 1 2 3 4 5 ⍝ (signum sum). ¯2 ¯1 0 1 2 ⍝ Upper left and lower right hand b←⊃(3 2)(5 6) ⍝ corners of a rectangle. ⍝ Various points in the plane p←⍉⊃(6 8)(5 2)(4 4)(7 6)(3 5)(2 3) ⍝ (2-space). ⍝ Positions: outside, boundary, int- b ×kcell p ⍝ erior, outside, boundary, outside. 1 0 ¯1 1 0 1 ⍝ Positions: Below right, corner, b +kcell p ⍝ interior, below, edge, above. 12 4 0 11 ¯5 ¯10 +kcell 1 0 ⍝ Unit square 4 b3←2 3⍴0 0 0 10 10 10 ⍝ Coordinates of a cube. b3 ×kcell ⍉⊃(5 5 5)(11 15 20)(3 8 10) ⍝ Inside, outside, boundary of cube. ¯1 1 0 ×kcell .1×⍉⊃(5 5 5)(11 15 20)(3 8 10) ⍝ Unit cube. ¯1 1 0 b3 +kcell 0 10 10 ⍝ Top left rear corner of the cube. ¯19 b3 +kcell 5 0 0 ⍝ Bottom Front Edge of the cube. ¯6 b3 +kcell 5 5 10 ⍝ Top Face of the cube. 1 b3 +kcell ⍉⊃(0 5 5)(2 3 4) ⍝ Left Face, Interior of cube. ¯25 0 ⍝∇ kcell Back to: code Back to: Workspaces