⍝ Determinant of square matrix:

    det 2 2⍴2 3 4 5
¯2
    det 1 1⍴3
3
    det 0 0⍴7
1
    hil←{÷1+∘.+⍨(⍳⍵)-⎕io}       ⍝ Order-⍵ Hilbert matrix.

    det hil 5
3.749295133E¯12

    det_rh4a←{⎕io ⎕ml←0         ⍝ Gauss-Jordan
        ⍺←1                     ⍝ product of diagonal entries so far
        0=n←⊃⍴⍵:⍺               ⍝ answer for 0-by-0
        p←{⍵⍳⌈/⍵}|⍵[;0]         ⍝ index of pivot row
        p=n:0                   ⍝ ⍵ is singular if column is all 0
        k←⍳n                    ⍝ row indices
        k[⌽i]←k[i←(×p)/p,0]     ⍝ interchange p and 0, if different
        (⍺×dׯ1*×p)∇ ⍵[1↓k;1↓⍳n]-(⍵[1↓k;0]÷d←⍵[⊃k;0])∘.×⍵[⊃k;1↓⍳n]
    }

    det_rh4a hil 5
3.749295133E¯12

    detG←{                                  ⍝ Gaussian determinant.
        (⎕IO ⎕ML)←1 3 ⋄ r←⍴⍵
        1≥×/r:↑⍵ ⋄ 2≠⍴r:0 ⋄ ≠/r:0           ⍝ check for trivial cases
        1{                                  ⍝ inner loop
            2>↑⍴⍵:↑⍺×⍵                      ⍝ end? -> result
            (m a c)←{                       ⍝ calculate matrix, anchor & coeff
                0≠1⍴⍵:⍵(1⍴⍵)1               ⍝ default: original matrix
                z←⍵ ⋄ j←{⍵⍳⌈/⍵}|z[;1]       ⍝ look for 1st non-zero
                z[1,j;]←z[j,1;]             ⍝ reorder matrix
                z(1⍴z)¯1                    ⍝ NB. coeff=¯1
            }⍵
            a=0:0                           ⍝ row of zeroes..
            (⍺×a×c)∇ 1 1↓m-m[;1]∘.×m[1;]÷a  ⍝ re-curses!
        }⍵
    }

    detG hil 5
3.749295133E¯12

    det_mv←{        ⍝ Matrix determinant, based on Mahajan-Vinay algorithm:

        ⍝|  Meena Mahajan and V Vinay.
        ⍝|   Determinant: Combinatorics, Algorithms, and Complexity
        ⍝|    http://www.imsc.ernet.in/~meena/publ.html

        (⎕IO ⎕ML)←0 3 ⋄ mat←⍵ ⋄ n←↑⍴mat
        V←(2,3/n)⍴0 ⋄ V[2|n;;;0]←1

        ↑{i←⍵
            ↑{v←⍵
                ↑{u←⍵ ⋄ n=⍵+1:0
                    ↑{
                        V[0;u;⍵;i+1]+←V[0;u;v;i]×mat[v;⍵]
                        V[1;⍵;⍵;i+1]+←V[0;u;v;i]×mat[v;u]
                        V[1;u;⍵;i+1]+←V[1;u;v;i]×mat[v;⍵]
                        V[0;⍵;⍵;i+1]+←V[1;u;v;i]×mat[v;u]
                        0
                    }¨(⍵+1)↓⍳n
                }¨⍳⍵+1
            }¨⍳n
        }¨⍳n-1:

        +/{-+/mat[⍵;⍳⍵+1]×-⌿V[;⍳⍵+1;⍵;n-1]}¨⍳n
    }

    det_mv hil 4
1.653439153E¯7

    detriment←{∇{⍵+(¯1*+/∧\⍺)×⍵⍵[⎕io;⍺⍳0]×⍺⍺ ⍺/1 0↓⍵⍵}⍵/(↓≠/¨⍳⍴⍵),0 0≡⍴⍵}

    detriment hil 4
1.653439153E¯7

    dd ← 2 2⍴ 0 1, 1 0

    det dd
¯1
    det_rh4a dd
¯1
    det_mv dd
¯1
    detG dd
¯1
    detriment dd
¯1

⍝∇ det

Back to: code

Back to: Workspaces