⍝ Conditional application: eis←1∘=∘≡cond⊂cond⊢ ⍝ enclose if depth=1. 1 (,1) (⊂,1) ⍝ items have depth 0 1 2 ┌─┬─┬───┐ │1│1│┌─┐│ │ │ ││1││ │ │ │└─┘│ └─┴─┴───┘ eis¨ 1 (,1) (⊂,1) ⍝ enclose depth-1 items. ┌─┬───┬───┐ │1│┌─┐│┌─┐│ │ ││1│││1││ │ │└─┘│└─┘│ └─┴───┴───┘ 0 1 ÷cond-¨ 3 ⍝ dyadic (as opposed to triadic) cond. ¯3 0.3333333333 unless←{~∘⍵⍵ cond ⍺⍺ cond⊢⍵} log←⍟unless(≤∘0) log 3 1.098612289 log 0 0 or←{(∨/⍺)cond((0⊥⍺)cond ⍵⍵ cond((2=⍴⍺)cond ⍺⍺ cond((¯1↓⍺)∘⍺⍺)))cond⊢⍵} 0 0 0 0-or×or⌈or⌊7.5 7.5 0 0 0 1-or×or⌈or⌊7.5 7 0 0 1 0-or×or⌈or⌊7.5 8 0 1 0 0-or×or⌈or⌊7.5 1 1 0 0 0-or×or⌈or⌊7.5 ¯7.5 ⍝ try alternative coding: cond←{ ⍝ proposition : consequence : alternative m q y←147036925 258147036 369258147 ⍺←m Õ←{⊃⊢∘⍺⍺/(⍳⍵⍵),⊂⍵} ⊢∘⍺⍺ Õ(⍺=q)⊢⊢∘⍵⍵ Õ(⍺=y)⊢⍺⍺{(q ⍺⍺ ⍵)⍺⍺{y∘⍺⍺ Õ ⍺⊢⊢∘⍵⍵ Õ(~⍺)⊢⍵}⍵⍵ ⍵}⍵⍵ Õ(⍺=m)⊢⍵ } eis←1∘=∘≡cond⊂cond⊢ ⍝ enclose if depth=1. eis¨ 1 (,1) (⊂,1) ⍝ enclose depth-1 items. ┌─┬───┬───┐ │1│┌─┐│┌─┐│ │ ││1│││1││ │ │└─┘│└─┘│ └─┴───┴───┘ ⍝∇ cond Back to: code Back to: Workspaces