⍝ Cholesky decomposition of Hermitian positive-definite matrix: x←t+.×⍉t←¯10+?5 5⍴20 x 111 106 22 ¯85 ¯14 106 198 ¯91 ¯150 69 22 ¯91 196 22 ¯118 ¯85 ¯150 22 166 ¯77 ¯14 69 ¯118 ¯77 151 y←Cholesky x y 10.53565375 0 0 0 0 10.06107475 9.837417078 0 0 0 2.088147591 ¯11.38601811 7.873895557 0 0 ¯8.067842964 ¯6.996636239 ¯5.183835597 5.008476789 0 ¯1.328821194 8.373068735 ¯2.525981305 ¯8.432039953 1.282994497 x ≡ y +.× ⍉y 1 ⍝ The t+.×⍉t construct is a handy way to generate a Hermitian, positive ⍝ definite matrix. For real numbers, "Hermitian" is the same as symmetric ⍝ (x≡⍉x); for complex matrices; Hermitian means z≡+⍉z (conjugate transpose). DCT ⎕DCT ← ⎕DCT ⎕CT z←t+.×+⍉t←(¯10+?5 5⍴20)+0j1ׯ10+?5 5⍴20 z 268 ¯171 ¯78J085 ¯104J¯031 43J0054 ¯171 457 ¯190J¯30 120J¯106 40J¯162 ¯78J¯85 ¯190J030 285 33J0004 ¯34J0045 ¯104J031 120J106 33J¯04 467 107J0116 43J¯54 40J162 ¯34J¯45 107J¯116 228 y←Cholesky z z ≡ y +.× +⍉y 1 ⎕DCT ← DCT ⍝∇ Cholesky Back to: code Back to: Workspaces