seq ← ##.k6174 nnnn ⍝ Kaprekar's operation. Take any 4-digit number in which not all of the digits are the same. Re-arrange the digits into descending and ascending order and subtract. Repeat. In 1949 D.R.Kaprekar pointed out that this sequence always results in an infin- ite repetition of the number 6174. For example: 1223 → 3221 - 1223 → 1998 → 9981 - 1899 → 8082 → 8820 - 0288 → 8532 → 8532 - 2358 → 6174 → 7641 - 1467 → 6174 → ... Ref: http://en.wikipedia.org/wiki/Kaprekar Examples: ↑{1↓⍕1e4+⍵}¨∘k6174¨ ⍳20 ⍝ First 20 Kaprekar sequences. 0001 0999 8991 8082 8532 6174 0002 1998 8082 8532 6174 0003 2997 7173 6354 3087 8352 6174 0004 3996 6264 4176 6174 0005 4995 5355 1998 8082 8532 6174 0006 5994 5355 1998 8082 8532 6174 0007 6993 6264 4176 6174 0008 7992 7173 6354 3087 8352 6174 0009 8991 8082 8532 6174 0010 0999 8991 8082 8532 6174 0011 1089 9621 8352 6174 0012 2088 8532 6174 0013 3087 8352 6174 0014 4086 8172 7443 3996 6264 4176 6174 0015 5085 7992 7173 6354 3087 8352 6174 0016 6084 8172 7443 3996 6264 4176 6174 0017 7083 8352 6174 0018 8082 8532 6174 0019 9081 9621 8352 6174 0020 1998 8082 8532 6174 ⍝ The following expression shows, of all 9990 possibilities, the number of ⍝ sequences of lengths 1 2 .. 8: {+⌿⍵∘.=⍳⌈/⍵} ≢∘k6174¨ (⍳9999)~1111×⍳9 ⍝ histogram. 1 383 576 2400 1272 1518 1656 2184 See also: osc m91 Back to: contents Back to: Workspaces