num ← ##.det nmat ⍝ Determinant of square matrix. From Roger Hui, [det] uses Gaussian elimination & Laplace expansion to find the determinant of square matrix [nmat]. [det] finds the maximal entry in the entire matrix, not just the maximal entry in column 0 (i.e. it does "full pivoting".). It doesn't do row or column inter- changes at all. Instead, after Gaussian elimination to zero out the i-th row (other than column j) or zero out the j-th column (other than row i), it does a Laplace expansion on the i-th row (or the j-th column). Post-Gaussian eliminat- ion, either expansion has just one non-zero co-factor, that is, just one minor ∇ ⍵[k~i;k~j] with a non-zero coefficient ⍵[i;j]ׯ1*i+j, and that coefficient is multiplied by ⍺ on the tail call. Alternative codings ------------------- Also from Roger, an earlier draft of [det]: det_4a←{⎕io←0 ⍺←1 ⍝ product of diagonal entries so far 0=n←⊃⍴⍵:⍺ ⍝ answer for 0-by-0 p←{⍵⍳⌈/⍵}|⍵[;0] ⍝ index of pivot row p=n:0 ⍝ ⍵ is singular if column is all 0 k←⍳n ⍝ row indices k[⌽i]←k[i←(×p)/p,0] ⍝ interchange p and 0, if different (⍺×dׯ1*×p)∇ ⍵[1↓k;1↓⍳n]-(⍵[1↓k;0]÷d←⍵[⊃k;0])∘.×⍵[⊃k;1↓⍳n] } The following rather unpleasant one-line alternative, is included just for amusement. It is interesting only in that it: - Is both ⎕IO and ⎕ML independent. - Has no guards or local variables. It is a single pure APL expression that, without testing or looping, denotes the determinant of its argument matrix. - Codes the mathematical definition of determinant, which is an O(!n) algorithm and so is viable for only the smallest of argument matrices. - Is the sort of thing that gets APL a bad name. detriment←{∇{⍵+(¯1*+/∧\⍺)×⍵⍵[⎕io;⍺⍳0]×⍺⍺ ⍺/1 0↓⍵⍵}⍵/(↓≠/¨⍳⍴⍵),0 0≡⍴⍵} VMJ suggests this version using the Gaussian method: detG←{ ⍝ Gaussian determinant. (⎕io ⎕ml)←1 3 ⋄ r←⍴⍵ 1≥×/r:↑⍵ ⋄ 2≠⍴r:0 ⋄ ≠/r:0 ⍝ check for trivial cases 1{ ⍝ inner loop 2>↑⍴⍵:↑⍺×⍵ ⍝ end? -> result (m a c)←{ ⍝ calculate matrix, anchor & coeff 0≠1⍴⍵:⍵(1⍴⍵)1 ⍝ default: original matrix z←⍵ ⋄ j←{⍵⍳⌈/⍵}|z[;1] ⍝ look for 1st non-zero z[1,j;]←z[j,1;] ⍝ reorder matrix z(1⍴z)¯1 ⍝ NB. coeff=¯1 }⍵ a=0:0 ⍝ row of zeroes.. (⍺×a×c)∇ 1 1↓m-m[;1]∘.×m[1;]÷a ⍝ re-curses! }⍵ } and ... det_mv←{ ⍝ Matrix determinant, based on Mahajan-Vinay algorithm: ⍝| Meena Mahajan and V Vinay. ⍝| Determinant: Combinatorics, Algorithms, and Complexity ⍝| https://www.imsc.res.in/~meena/publ.html (⎕io ⎕ml)←0 3 ⋄ mat←⍵ ⋄ n←↑⍴mat V←(2,3/n)⍴0 ⋄ V[2|n;;;0]←1 ↑{i←⍵ ↑{v←⍵ ↑{u←⍵ ⋄ n=⍵+1:0 ↑{ V[0;u;⍵;i+1]+←V[0;u;v;i]×mat[v;⍵] V[1;⍵;⍵;i+1]+←V[0;u;v;i]×mat[v;u] V[1;u;⍵;i+1]+←V[1;u;v;i]×mat[v;⍵] V[0;⍵;⍵;i+1]+←V[1;u;v;i]×mat[v;u] 0 }¨(⍵+1)↓⍳n }¨⍳⍵+1 }¨⍳n }¨⍳n-1: +/{-+/mat[⍵;⍳⍵+1]×-⌿V[;⍳⍵+1;⍵;n-1]}¨⍳n } Examples: det 2 2⍴2 3 4 5 ¯2 det 2 2⍴0 1 1 0 ¯1 det 1 1⍴3 3 det 0 0⍴7 1 hil←{÷1+∘.+⍨(⍳⍵)-⎕io} ⍝ Order ⍵ Hilbert matrix. det hil 10 2.1644805E¯53 See also: gauss_jordan Cholesky Back to: contents Back to: Workspaces