```tree ← {slant←1}(fn ##.dft) spread          ⍝ Display of function tree.

Operator [dft] returns a character matrix representation of its function operand
[fn].

Right argument [spread] determines the horizontal width of tree branches:

'<'∘,∘(,∘'>') dft¨ 1 3    ⍝ narrow and wide tree display.
∘           ∘
┌─┴─┐     ┌───┴───┐
∘   ∘     ∘       ∘
┌┴┐ ┌┴┐  ┌─┴─┐   ┌─┴─┐
< , , >  <   ,   ,   >

Optional left argument {slant←1} determines whether a  monadic  operator  should
suspend its left operand by a vertical (0) or slanted (1) line:

1 0 +¨¨¨.× dft¨ 3       ⍝ compare slanted vs vertical left operand.
.      .
┌─┴─┐  ┌─┴─┐
¨   ×  ¨   ×
┌─┘      │
¨        ¨
┌─┘        │
¨          ¨
┌─┘          │
+            +

[dft] subsumes and replaces operator "ddft" and is extended to be function-train

(+/÷⍴) dft 1        ⍝ display of fork.
┌─┼─┐
/ ÷ ⍴
┌┘
+
ulam dft 1          ⍝ display of longer train:
┌───┼────────┐
┌┴┐  ∘     ┌──┼─────────────┐
2 ⍴ ┌┴─┐   ⍨  ↑ ┌───────────┼─────┐
⍴ ┌┴┐ ┌┘ ┌──┼─────┐     , ┌───┼──────┐
⍒ \ × ┌┴┐ + ┌───┼───┐   /   ∘   ┌──┼───┐
┌┘   2 |  ┌┴┐  ∘   ∘  ┌┴┐ ┌┴┐ ┌┴┐ ⍴ ┌─┼───┐
+         1 + ┌┴┐ ┌┴┐ 2 ⍳ / ⊢ 2 ×   1 , ┌─┼──┐
× ⌊ ÷ 2                   - , ┌┴─┐
¯1 ,
Technical notes:

For large trees, much space can be saved in the output by  meshing  subtrees  to
overlap vertically.

Without vertical overlap                With vertical overlap
------------------------                ---------------------
∘                                      ∘
┌──┴──────────┐                       ┌───┴───┐
∘             ∘                       ∘       ∘
┌──┴─┐        ┌──┴─┐                   ┌─┴─┐   ┌─┴─┐
∘    +        ∘    +                   ∘   +   ∘   +
┌──┴─┐        ┌──┴─┐                    ┌─┴─┐   ┌─┴─┐
∘    +        ∘    +                    ∘   +   ∘   +
┌─┴─┐         ┌─┴─┐                     ┌─┴─┐   ┌─┴─┐
∘   +         ∘   +                     ∘   +   ∘   +
┌─┴─┐         ┌─┴─┐                     ┌─┴─┐   ┌─┴─┐
+   +         +   +                     +   +   +   +

This is achieved by inner function "mesh" using steps:

1. Extend the shallower subtree so that both have the same number of rows.
2. Determine the minimum horizontal gap between the subtrees.
3. Distribute the number of characters to be dropped between the subtrees.
4. Drop separating blanks; join corresponding rows; mix rows to a matrix.

Examples:

deco← +.×⍨∘(÷∘⌽∘(+\)∘⌽⍨)⍨               ⍝ derived function. See →tacit←

⎕cr'deco'                               ⍝ nested canonical representation.
┌────────────────────────────────┬─┐
│┌───────┬─┬────────────────────┐│⍨│
││┌───┬─┐│∘│┌────────────────┬─┐││ │
│││+.×│⍨││ ││┌──────────┬─┬─┐│⍨│││ │
││└───┴─┘│ │││┌───┬─┬──┐│∘│⌽││ │││ │
││       │ ││││÷∘⌽│∘│+\││ │ ││ │││ │
││       │ │││└───┴─┴──┘│ │ ││ │││ │
││       │ ││└──────────┴─┴─┘│ │││ │
││       │ │└────────────────┴─┘││ │
│└───────┴─┴────────────────────┘│ │
└────────────────────────────────┴─┘

deco dft 3                                  ⍝ 3-spread tree.
⍨
┌─┘
∘
┌───┴───┐
⍨       ⍨
┌─┘     ┌─┘
.       ∘
┌─┴─┐   ┌─┴─┐
+   ×   ∘   ⌽
┌───┴───┐
∘       \
┌─┴─┐   ┌─┘
÷   ⌽   +

+{⍺⍺ ⍵}{⍺⍺ ⍵} dft 3                         ⍝ non-primitive operator.
{⍺⍺·⍵}
┌─┘
{⍺⍺·⍵}
┌─┘
+

∧¨¨¨¨¨¨{⍺⍺∘⍺⍺{⍺⍺∘⍺⍺{⍺⍺∘⍺⍺ dft ⍵}⍵}⍵}3       ⍝ scary sea monster.
∘
┌───────────┴───────────┐
∘                       ∘
┌─────┴─────┐           ┌─────┴─────┐
∘           ∘           ∘           ∘
┌──┴──┐     ┌──┴──┐     ┌──┴──┐     ┌──┴──┐
¨     ¨     ¨     ¨     ¨     ¨     ¨     ¨
┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘
¨     ¨     ¨     ¨     ¨     ¨     ¨     ¨
┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘
¨     ¨     ¨     ¨     ¨     ¨     ¨     ¨
┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘
¨     ¨     ¨     ¨     ¨     ¨     ¨     ¨
┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘
¨     ¨     ¨     ¨     ¨     ¨     ¨     ¨
┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘
¨     ¨     ¨     ¨     ¨     ¨     ¨     ¨
┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘   ┌─┘
∧     ∧     ∧     ∧     ∧     ∧     ∧     ∧

(⌊⌊.⌊⌊)dft 1                                ⍝ Robot
┌─┼─┐
⌊ . ⌊
┌┴┐
⌊ ⌊

⍝ In the absence of a more general mechansism in Dyalog,  we need to augment our
⍝ operator set in order to be able to translate expressions of ⍺ and ⍵ into der-
⍝ ived functions.  Combinators [in] and [on],  together with primitive operators
⍝ compose ∘ and commute ⍨ allow us to build long function-operator trains:
⍝                                                                           <V>
in←{⊃⍺⍺/⍵}              ⍝ in (between):         f in x y → x f y
on←{⍺⍺ ⍺ ⍵}             ⍝ and its counterpart:  x f on y → f x y

⍝ J language's hook and fork constructs may be translated into such
⍝ trains using:  ┌──────────┬──────────────────┬─────────────────────┐
⍝                │ J Syntax │ Equivalent D     │ Equivalent Train    │
⍝  ┌─────────────┼──────────┼──────────────────┼─────────────────────┤
⍝  │Monadic Hook │ (g h)    │ {⍵ g h ⍵}        │ g∘h⍨                │
⍝  ├─────────────┼──────────┼──────────────────┼─────────────────────┤
⍝  │Dyadic  Hook │ (g h)    │ {⍺ g h ⍵}        │ g∘h                 │
⍝  ├─────────────┼──────────┼──────────────────┼─────────────────────┤
⍝  │Monadic Fork │ (f g h)  │ {(f ⍵)g h ⍵}     │ g∘h⍨∘f⍨             │
⍝  ├─────────────┼──────────┼──────────────────┼─────────────────────┤
⍝  │Dyadic  Fork │ (f g h)  │ {(⍺ f ⍵)g ⍺ h ⍵} │ g∘(h in)⍨∘(f in)⍨on │
⍝  └─────────────┴──────────┴──────────────────┴─────────────────────┘

⍝ NB: Dyalog V14 introduces the fork as a primitive construct and so many of the
⍝ following examples may be simplified.                                     <V>

⍝ For example:

avg ← ÷∘⍴⍨∘(+/)⍨                    ⍝ equivalent of monadic fork (+/ ÷ ⍴)

avg 1 2 3 4                         ⍝ test function.
1 2 3 4

avg dft 3                           ⍝ display of function tree.
⍨
┌─┘
∘
┌──┴──┐
⍨     /
┌─┘   ┌─┘
∘     +
┌─┴─┐
÷   ⍴

leq ← ∨∘(=in)⍨∘(<in)⍨on             ⍝ equivalent of dyadic fork (< ∨ =)

0 0 1 1 leq 0 1 0 1                 ⍝ test function.
1 1 0 1

leq dft 3                           ⍝ display of function tree.
on←{⍺⍺·⍺·⍵}
┌─┘
⍨
┌─┘
∘
┌──┴──┐
⍨     in←{⊃⍺⍺/⍵}
┌─┘   ┌─┘
∘     <
┌─┴─┐
∨   in←{⊃⍺⍺/⍵}
┌─┘
=

⍝ Historical note: Mechanisms for distributing arguments through trees of
⍝ functions originated in the field of combinatorial logic in the 1920s
⍝ and 30s. See min.dws/Background for more on combinators.

⍝ More examples of function-operator trains:

fib ← +/∘(!∘⌽⍨)∘(-∘⎕io)∘⍳           ⍝ ⍵th fibonacci number.

fib¨⍳10
1 1 2 3 5 8 13 21 34 55

fib dft 3
∘
┌─┴─┐
∘   ⍳
┌───┴────┐
∘        ∘
┌──┴──┐   ┌─┴─┐
/     ⍨   -   1
┌─┘   ┌─┘
+     ∘
┌─┴─┐
!   ⌽

dinv ← ↑⍨∘-⍨∘⊃⍨∘(+⍨∘⊃⍨∘(×∘⍴⍨∘×⍨in)⍨on⍨in)⍨on⍨   ⍝ inverse for ⍺∘↓.

2 3 dinv 3 2⍴⍳6
0 0 0 0 0
0 0 0 0 0
0 0 0 1 2
0 0 0 3 4
0 0 0 5 6

dinv dft 3                          ⍝ display of function tree.
⍨
┌─┘
on←{⍺⍺·⍺·⍵}
┌─┘
⍨
┌─┘
∘
┌───┴───┐
⍨       in←{⊃⍺⍺/⍵}
┌─┘     ┌─┘
∘       ⍨
┌─┴─┐   ┌─┘
⍨   ⊃   on←{⍺⍺·⍺·⍵}
┌─┘     ┌─┘
∘       ⍨
┌─┴─┐   ┌─┘
⍨   -   ∘
┌─┘   ┌───┴───┐
↑     ⍨       in←{⊃⍺⍺/⍵}
┌─┘     ┌─┘
∘       ⍨
┌─┴─┐   ┌─┘
⍨   ⊃   ∘
┌─┘     ┌─┴─┐
+       ⍨   ×
┌─┘
∘
┌─┴─┐
×   ⍴

rinv ← ⌈/¨∘(-∘⊂∘⍳∘(⊃∘⌽)∘⍴∘⊃⍨)∘(⍳¨in)∘(↓¨)on     ⍝ inverse for ⌽∘⍵.

'Mississippi' rinv 'issippiMiss'
4
rinv dft 3                          ⍝ display of function tree.
on←{⍺⍺·⍺·⍵}
┌─┘
∘
┌─────────┴──────────┐
∘                    ¨
┌────┴─────┐            ┌─┘
∘          in←{⊃⍺⍺/⍵}   ↓
┌──┴──┐     ┌─┘
¨     ⍨     ¨
┌─┘   ┌─┘   ┌─┘
/     ∘     ⍳
┌─┘   ┌─┴─┐
⌈     ∘   ⊃
┌─┴─┐
∘   ⍴
┌───┴───┐
∘       ∘
┌─┴─┐   ┌─┴─┐
∘   ⍳   ⊃   ⌽
┌─┴─┐
-   ⊂

⍝ Functions for 1st and 2nd items of a pair, used in these examples, might also
⍝ be considered combinators.  In the examples above, they have been implemented
⍝ (assuming ⎕ml<2) as ⊃ and ⊃∘⌽, respectively. A more satisfying, though slower,
⍝ alternative might be:

fst ← ⊣in     ⍝ 1st item of pair.
snd ← ⊢in     ⍝ 2nd item of pair.